Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae.

نویسندگان

  • Albert Lee
  • Anthony K Henras
  • Guillaume Chanfreau
چکیده

Tight regulation of the expression of mRNAs encoding iron uptake proteins is essential to control iron homeostasis and avoid intracellular iron toxicity. We show that many mRNAs encoding iron uptake or iron mobilization proteins are expressed in iron-replete conditions in the absence of the S. cerevisiae RNase III ortholog Rnt1p or of the nuclear exosome component Rrp6p. Extended forms of these mRNAs accumulate in the absence of Rnt1p or of the 5'-->3' exonucleases Xrn1p and Rat1p, showing that multiple degradative pathways contribute to the surveillance of aberrant forms of these transcripts. RNase III-deficient cells are hypersensitive to high iron concentrations, suggesting that Rnt1p-mediated RNA surveillance is required to prevent iron toxicity. These results show that RNA surveillance through multiple ribonucleolytic pathways plays a role in iron homeostasis in yeast to avoid the potentially toxic effects of the expression of the iron starvation response in iron-replete conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake.

In the yeast Saccharomyces cerevisiae, uptake of iron is largely regulated by the transcription factor Aft1. cDNA microarrays were used to identify new iron and AFT1-regulated genes. Four homologous genes regulated as part of the AFT1-regulon (ARN1-4) were predicted to encode members of a subfamily of the major facilitator superfamily of transporters. These genes were predicted to encode protei...

متن کامل

Zataria multiflora Essential oil Prevent Iron Oxide Nanoparticles-induced Liver Toxicity in Rat Model

Over loading of iron oxide nanoparticles can causes the liver injury through overproduction of free radicals. Zataria multiflora Boiss. (Lamiaceae) has been used for many years in folk medicine due to its antioxidant and antibacterial activities. This study evaluates -for the first time- the effect of Z. multiflora essential oil (EO) against iron oxide nanoparticles hepatotoxicity in rat model....

متن کامل

Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae.

The budding yeast Saccharomyces cerevisiae responds to depletion of iron in the environment by activating Aft1p, the major iron-dependent transcription factor, and by transcribing systems involved in the uptake of iron. Here, we have studied the transcriptional response to iron deprivation and have identified new Aft1p target genes. We find that other metabolic pathways are regulated by iron: b...

متن کامل

Influence of microRNA on the Maintenance of Human Iron Metabolism

Iron is an essential nutrient critical for many cellular functions including DNA synthesis, ATP generation, and cellular proliferation. Though essential, excessive iron may contribute to the generation of free radicals capable of damaging cellular lipids, proteins, and nucleic acids. As such, the maintenance and control of cellular iron homeostasis is critical to prevent either iron deficiency ...

متن کامل

Sequential RNA degradation pathways provide a fail-safe mechanism to limit the accumulation of unspliced transcripts in Saccharomyces cerevisiae.

The nuclear exosome and the nonsense-mediated mRNA decay (NMD) pathways have been implicated in the degradation of distinct unspliced transcripts in Saccharomyces cerevisiae. In this study we show that these two systems can act sequentially on specific unspliced pre-mRNAs to limit their accumulation. Using steady-state and decay analyses, we show that while specific unspliced transcripts rely m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2005